Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest Canopies

نویسندگان

  • Harri Kaartinen
  • Juha Hyyppä
  • Mikko Vastaranta
  • Antero Kukko
  • Anttoni Jaakkola
  • Xiaowei Yu
  • Jiri Pyörälä
  • Xinlian Liang
  • Jingbin Liu
  • Risto Kaijaluoto
  • Timo Melkas
  • Markus Holopainen
  • Hannu Hyyppä
  • Eric J. Jokela
چکیده

A harvester enables detailed roundwood data to be collected during harvesting operations by means of the measurement apparatus integrated into its felling head. These data can be used to improve the efficiency of wood procurement and also replace some of the field measurements, and thus provide both less costly and more detailed ground truth for remote sensing based forest inventories. However, the positional accuracy of harvester-collected tree data is not sufficient currently to match the accuracy per individual trees achieved with remote sensing data. The aim in the present study was to test the accuracy of various instruments utilizing global satellite navigation systems (GNSS) in motion under forest canopies of varying densities to enable us to get an understanding of the current state-of-the-art in GNSS-based positioning under forest canopies. Tests were conducted using several different combinations of GNSS and inertial measurement unit (IMU) mounted OPEN ACCESS Forests 2015, 6 3219 on an all-terrain vehicle (ATV) “simulating” a moving harvester. The positions of 224 trees along the driving route were measured using a total-station and real-time kinematic GPS. These trees were used as reference items. The position of the ATV was obtained using GNSS and IMU with an accuracy of 0.7 m (root mean squared error (RMSE) for 2D positions). For the single-frequency GNSS receivers, the RMSE of real-time 2D GNSS positions was 4.2–9.3 m. Based on these results, it seems that the accuracy of novel single-frequency GNSS devices is not so dependent on forest conditions, whereas the performance of the tested geodetic dual-frequency receiver is very sensitive to the visibility of the satellites. When postprocessing can be applied, especially when combined with IMU data, the improvement in the accuracy of the dual-frequency receiver was significant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increasing Accuracy of Combined GPS and GLONASS Positioning using Fuzzy Kalman Filter

In this paper, combined GPS and GLONASS positioning systems are discussed and some solutions have been proposed to improve the accuracy of navigation. Global Satellite Navigation System (GNSS) is able to provide position, velocity and time with respect to coordinated universal time. GNSS positioning is based on received satellite signals, so its performance is highly dependent on the quality of...

متن کامل

Kinematic Precise Point Positioning Using Multi-Constellation Global Navigation Satellite System (GNSS) Observations

Multi-constellation global navigation satellite systems (GNSSs) are expected to enhance the capability of precise point positioning (PPP) by improving the positioning accuracy and reducing the convergence time because more satellites will be available. This paper discusses the performance of multi-constellation kinematic PPP based on a multi-constellation kinematic PPP model, Kalman filter and ...

متن کامل

Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services

Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10-20 m (achieved by the standard positioning servic...

متن کامل

Improvement of Navigation Accuracy using Tightly Coupled Kalman Filter

In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...

متن کامل

QoS-Aware Reference Station Placement for Regional Network RTK

Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more generally on GNSS (Global Navigation Satellite System) measurements to achieve centimeter-level accuracy positioning in real-time. Reference station placement is an important problem in the design and deployment of network RTK systems as it directly affects the quality of the positioning s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015